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Abstract

すべての因数分解に適用できる公式は、現在存在しない。ゆえに私は、長年それを作りたいと
考えている。そこで、まず様々な群の表現の既約分解と多変数多項式の因数分解の対応関係を、
群の構造と表現論の研究を通して明らかにした。この研究では、こうした因数分解の解法を成り
立たせている原理を、一般の有限群の群表から得られる群行列式と表現論を用いて説明する。こ
の研究によって因数分解が容易になる場合があるという利点がある。群表から愚直に群行列式を
計算すると膨大な労力が必要であるが、既約表現から群行列式を求めると比較的簡単だからだ。
2次、3次、４次巡回群、正 2面体群、2次巡回群の直積群で調べ、このレポートでは正 2面体群
の場合についてまとめた。群行列式を使うことによって、群表や計算ソフトウエアを使わずとも
計算を進めることができる。

1 導入
1.1 群の表現
　一般に群の複素ベクトル空間上の表現とは、準同型

ρ : G → GL(V )

のことである。ここで GL(V ) は V から V への線形同型写像全体のなす群である。V の次元 dimV
を、表現 ρ の次数という。

d 次正則複素行列のなす群

GLd(C) = {A ∈ Md(C) | detA 6= 0 }

を d 次複素一般線形群とよぶ。
定義 1.1. 群行列式
有限群 G の d 次線形表現を

T : G → GLd(C)

とする。G = {x1, . . . , xn} とし，各 xi に対応する変数を ai とする。このとき

ΘT = det

(
n∑

i=1

T (xi) ai

)
を組 (G,T ) の群行列式という。ここで det(·) は行列式を表す。
行列 T (xi) の (k, l) 成分を tkl(xi) と書くと，

T (xi) =
(
tkl(xi)

)
1≤k,l≤d
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であり，これは複素数を成分とする行列である。したがって

T (xi)ai =
(
tkl(xi)ai

)
1≤k,l≤d

となる。このとき
n∑

i=1

T (xi)ai

の各成分は，変数 a1, . . . , an の一次式である。
定義 1.2 (正則表現). 有限群 G = {x1, . . . , xn} とする。x1, . . . , xn を基底とする複素ベクトル空間
を V とする。すなわち

V =

{
n∑

i=1

cixi

∣∣∣∣∣ ci ∈ C

}

である。群 G の元 g を左から作用させることにより，

gxi = xj

となる j が一意に定まる。したがって，この作用は基底 x1, . . . , xn の入れ替えを与える。
任意の v =

∑n
i=1 cixi ∈ V に対し，

T (g)v =

n∑
i=1

ci (gxi)

1.2 巡回群の正則表現の例 (n = 2)

　具体的に n 次巡回群を考える。群 G = 〈g〉, g2 = 1 で生成される 2 次巡回群を考える。複素ベク
トル空間 V の基底は {1, g} であり、任意の v ∈ V は

v = c1 · 1 + c2 · g

と書ける。作用 T (gk) は
T (gk)(v) = c1g

k + c2g
k+1

で与えられる。この作用は V から V への線形写像となる。
基底 {1, g} に関する行列表示は次の通りである：

T (1) =

(
1 0
0 1

)
, T (g) =

(
0 1
1 0

)
.

定義 1.3 (表現の同値). 群 G の 2 つの表現

T1 : G → GLd(C), T2 : G → GLd(C)

が同値とは、次の条件を満たすことをいう：

∃P ∈ GLd(C) s.t. T1(x) = PT2(x)P
−1, ∀x ∈ G.

このとき、T1 ∼ T2 と書く。これは、V = Cd の基底変換に対応している。



命題 1.4. T1 ∼ T2 であるとき、群行列式は等しい：

ΘT1
= ΘT2

.

Proof. 一般に X,P ∈ GLd(C) のとき、

det(PXP−1) = det(P ) det(X) det(P−1) = det(X)

である。さらに、T1(x) = PT2(x)P
−1 のとき、

ΘT1 = det

(
n∑

i=1

T1(xi)ai

)

= det

(
n∑

i=1

PT2(xi)P
−1ai

)

= det

(
P
( n∑
i=1

T2(xi)ai

)
P−1

)

= det

(
n∑

i=1

T2(xi)ai

)
= ΘT2 .

定義 1.5 (表現の直和). T を群 G の表現とする：

T : G → GLd(C)

を
T (x) =

(
T1(x) 0
0 T2(x)

)
, ∀x ∈ G

とする。ただし、T1(x) は d1 次行列、T2(x) は d2 次行列である。
このとき、x ∈ G に Ti(x) を対応させる写像

Ti : G → GLdi
(C)

は G の表現を与える。このとき
T = T1 ⊕ T2

と書き、表現 T を T1 と T2 の直和 (direct sum) という。



命題 1.6. 有限群 G とその表現 T1, T2 を考える。T = T1 ⊕ T2 とすると、群行列式は次の積で表さ
れる：

ΘT = ΘT1
ΘT2

.

Proof.

ΘT = det

(
n∑

i=1

T (xi)ai

)

= det

(
n∑

i=1

ai

(
T1(xi) 0

0 T2(xi)

))

= det

(∑n
i=1 aiT1(xi) 0

0
∑n

i=1 aiT2(xi)

)
= det

(
n∑

i=1

aiT1(xi)

)
· det

(
n∑

i=1

aiT2(xi)

)
= ΘT1

ΘT2
.

1.3 群行列式に関する定理
定義 1.7. 表現 T が直既約であるとは、

T 6∼ T1 ⊕ T2

を満たすこと、ただし T1, T2 は非自明な表現である。このレポートでは有限群の複素数体上の表現
の場合のみ扱い、このとき直既約な表現は既約な表現に一致する。以下、直既約のことを既約と書く。
定理 1.8 (フロベニウス). 群 G の既約表現 T に対して、群行列式

ΘT = det

(
n∑

i=1

T (xi)ai

)

は、変数 a1, . . . , an（n = |G|）の多項式として既約である。
定理 1.9. 有限群 Gの既約表現の同値類は、Gの共役類の個数だけある。
定理 1.10. T1, T2, . . . , Tk を互いに同値でない G の全ての既約表現とする。Tj の次数を dj とする
と、G の正則表現 R は次のように分解される：

R ∼ d1T1 ⊕ d2T2 ⊕ · · · ⊕ dkTk.

したがって、群行列式は

ΘR =

k∏
i=1

Θ di

Ti

となる。上のフロベニウスの定理により、これは群行列式の既約多項式への因数分解に対応する。



1.4 群表
定義 1.11 (群表). デデキント全集にもある通り (Dedekind, Gesammelte mathematische Werke,
Band II, 423 S.)、群 G の 群表 とは、i 行 j 列に積 xix

−1
j を書いた表のことである。群 G の正

則表現 R の行列表示から、群表を得ることができる。すなわち、
n∑

i=1

R(xi)xi

は G の群表を与える。

2 正 2面体群 D2n の行列表示
　ここでは、正 2面体群の回転、鏡映の様子を行列を用いて説明する。そのあと、群表から得られる
群行列式を用いて行列式の値を計算する。正 2面体群 D2n は、空間にある正 n 角形を自分自身に重
ね合わせる回転、鏡映全体のなす群である。位数は |D2n| = 2n。

2.1 群の元
　正 n 角形の対称群である正 2 面体群 D2n は，次の生成元と関係式によって定義される：

D2n = 〈 a, b | an = e, b2 = e, bab−1 = a−1 〉.

• 中心 O 周りの回転：
e, a, a2, . . . , an−1

• 対称軸に関する鏡映：
b, ba, ba2, . . . , ban−1

よってこれらを合わせて 2n 個の元がある。

2.2 3次元行列表示

a =

cos 2π
n − sin 2π

n 0
sin 2π

n cos 2π
n 0

0 0 1

 , b =

−1 0 0
0 1 0
0 0 1

 .

2.3 2次元表現
　 xy 平面に制限すると

Rl(a) :=

(
cos 2πl

n − sin 2πl
n

sin 2πl
n cos 2πl

n

)
, Rl(b) :=

(
−1 0
0 1

)
, l = 0, 1, . . . , n− 1

となる。このとき
Rl : D2n → GL2(C) a 7→ Rl(a), b 7→ Rl(b)

は D2n の表現である。



2.4 複素行列による C表現
　回転行列は C上で初めて対角化できるので、ω = e2πi/n とすると

R′
l(a) :=

(
ωl 0
0 ω−l

)
, R′

l(b) :=

(
0 1
1 0

)
.

このとき
R′

l : D2n → GL2(C)

が得られ、実際に Rl と R′
l は同値である。なぜなら、

S =

(
1 i
−1 i

)
=⇒ SRlS

−1 = R′
l, Rl ∼ R′

l ⇐⇒ l = −l′ (mod n)

3 既約表現の分類
3.1 1次表現
■n が偶数の場合

ξ0 : a 7→ 1, b 7→ 1

ξ1 : a 7→ 1, b 7→ −1

ξ2 : a 7→ −1, b 7→ 1

ξ3 : a 7→ −1, b 7→ −1

■n が奇数の場合
ξ0 : a 7→ 1, b 7→ 1

ξ1 : a 7→ 1, b 7→ −1

3.2 2次既約表現
• n が偶数のとき： R′

1, . . . , R
′
(n/2)−1

• n が奇数のとき： R′
1, . . . , R

′
(n−1)/2

4 群行列式の計算例
注 4.1. 以降、xi に対応する変数 ai を、ai の代わりに xi を用いて書く。元 D2n の元 xi は a, bを
用いて表されるため混同しない。

4.1 n = 2 の場合 (D4)

D4 = {e, a, b, ab}, |D4| = 4



■群表
e = x1, a = x2, b = x3, ab = x4

と変数変換して

x−1
1 x−1

2 x−1
3 x−1

4

x1 x1 x2 x3 x4

x2 x2 x1 x4 x3

x3 x3 x4 x1 x2

x4 x4 x3 x2 x1

■1次表現の群行列式 　

Θξ0 = |x1 + x2 + x3 + x4| = x1 + x2 + x3 + x4

Θξ1 = |x1 + x2 − x3 − x4| = x1 + x2 − x3 − x4

Θξ2 = |x1 − x2 + x3 − x4| = x1 − x2 + x3 − x4

Θξ3 = |x1 − x2 − x3 + x4| = x1 − x2 − x3 + x4

となる。群行列式の積は

Θξ0Θξ1Θξ2Θξ3 = (x1 + x2 + x3 + x4)(x1 + x2 − x3 − x4)(x1 − x2 + x3 − x4)(x1 − x2 − x3 + x4)

4.2 n = 3 の場合 (D6)

　
D6 = {e, a, a2, b, ab, a2b} |D6| = 6

である。
■群表

e = x1, a = x2, a
2 = x3, b = x4, ab = x5, a

2b = x6

と変数変換して
x−1
1 x−1

2 x−1
3 x−1

4 x−1
5 x−1

6

x1 x1 x3 x2 x4 x5 x6

x2 x2 x1 x3 x5 x6 x4

x3 x3 x2 x1 x6 x4 x5

x4 x4 x5 x6 x1 x3 x2

x5 x5 x6 x4 x2 x1 x3

x6 x6 x4 x5 x3 x2 x1

■1次表現の群行列式
Θξ0 = x1 + x2 + x3 + x4 + x5 + x6

Θξ1 = x1 + x2 + x3 − x4 − x5 − x6

■2次表現 R′
1 の群行列式

R′
1(a) =

(
ω 0
0 ω−1

)
, R′

1(b) =

(
0 1
1 0

)
, ω = e2πi/3

ΘR′
1
=
∣∣x1I2 + x2R

′
1(a) + x3R

′
1(a

2) + x4R
′
1(b) + x5R

′
1(ab) + x6R

′
1(a

2b)
∣∣ .



1の原始 3乗根 ω の性質 ω3 = 1, ω2 + ω = −1 を用いてこの行列式を計算すると

ΘR′
1
= (x1 + ωx2 + ω2x3)(x1 + ω−1x2 + ω−2x3)− (x4 + ωx5 + ω2x6)(x4 + ω−1x5 + ω−2x6)

= x2
1 + x2

2 + x2
3 − x1x2 − x2x3 − x3x1 −

(
x2
4 + x2

5 + x2
6 − x4x5 + x5x6 + x6x4

)
したがって**群表から計算した群行列式の積**

Θξ0Θξ1(ΘR′
1
)2

と一致することが確認できる。

4.3 n = 4 の場合 (D8)

　 n は偶数であり、D8 の既約表現は

1次表現: ξ0, ξ1, ξ2, ξ3, 2次表現: R′
1

である。群 D8 の元は
D8 = {e, a, a2, a3, b, ab, a2b, a3b}

■群表
e = x1, a = x2, a

2 = x3, a
3 = x4, b = x5, ab = x6, a

2b = x7, a
3b = x8

と変数変換して
x−1
1 x−1

2 x−1
3 x−1

4 x−1
5 x−1

6 x−1
7 x−1

8

x1 x1 x4 x3 x2 x5 x6 x7 x8

x2 x2 x1 x4 x3 x6 x7 x8 x5

x3 x3 x2 x1 x4 x7 x8 x5 x6

x4 x4 x3 x2 x1 x8 x5 x6 x7

x5 x5 x6 x7 x8 x1 x4 x3 x2

x6 x6 x7 x8 x5 x2 x1 x4 x3

x7 x7 x8 x5 x6 x3 x2 x1 x4

x8 x8 x5 x6 x7 x4 x3 x2 x1

■1次表現の群行列式
Θξ0 = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8

Θξ1 = x1 + x2 + x3 + x4 − x5 − x6 − x7 − x8

Θξ2 = x1 − x2 + x3 − x4 + x5 − x6 + x7 − x8

Θξ3 = x1 − x2 + x3 − x4 − x5 + x6 − x7 + x8

■2次表現 R′
1 の群行列式

R′
1(a) =

(
i 0
0 −i

)
, R′

1(b) =

(
0 1
1 0

)

ΘR′
1
=
∣∣x1I2 + x2R

′
1(a) + x3R

′
1(a

2) + x4R
′
1(a

3) + x5R
′
1(b) + x6R

′
1(ab) + x7R

′
1(a

2b) + x8R
′
1(a

3b)
∣∣ .

ω = e2πi/4 = i を用いて計算すると

ΘR′
1
=

∣∣∣∣ x1 + ωx2 + ω2x3 + ω3x4 x5 + ωx6 + ω2x7 + ω3x8

x5 + ω−1x6 + ω−2x7 + ω−3x8 x1 + ω−1x2 + ω−2x3 + ω−3x4

∣∣∣∣
= x2

1 − 2x1x3 + x2
2 − 2x2x4 + x2

3 + x2
4 − x2

5 + 2x5x7 − x2
6 + 2x6x8 − x2

7 − x2
8



Θξ0Θξ1Θξ2Θξ3ΘR′
1
= (x1+x2+x3+x4+x5+x6+x7+x8)(x1+x2+x3+x4−x5−x6−x7−x8)

(x1 − x2 + x3 − x4 + x5 − x6 + x7 − x8)(x1 − x2 + x3 − x4 − x5 + x6 − x7 + x8)

(x2
1 − 2x1x3 + x2

2 − 2x2x4 + x2
3 + x2

4 − x2
5 + 2x5x7 − x2

6 + 2x6x8 − x2
7 − x2

8)
2

これにより、**群表から計算した群行列式の積**

Θξ0Θξ1Θξ2Θξ3(ΘR′
1
)2

と一致することが確認できる。
注 4.2. D4 は C2 ×C2 と同型な可換群である。この結果は C2 ×C2 の直積群の場合と等しくなる。

5 今後の展望
　巡回群の群表から得られる群行列式も、正則表現から考えた群行列式のどちらも同じになる。今
回、ある種の対称性をもった多項式は群の表現を用いて因数分解できることが分かったので、今後は
様々な群から得られる多変数多項式において既約分解をしたい。また対称性をもった群から作られる
群表にも対称性が現れているので、その規則性についても考えたい。表現論の観点から因数分解の解
法を見つけ法則化したい。
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